Cumulative Impacts Analysis

Cumulative Impacts Analysis Protocol

Potential cumulative air quality impacts that might be expected to occur resulting from the SVEP and other reasonably foreseeable projects are both regional and localized in nature. These cumulative impacts will be evaluated as follows.

8.1H.1 Regional Impacts

Regional air quality impacts are possible for pollutants such as ozone, which involve photochemical processes that can take hours to occur. The SVEP will provide emissions offsets (mitigation) for NO_x and VOC at the ratios specified in the SCAQMD regulations. Additional mitigation for other pollutants may be required by the CEC.

Although the relative importance of VOC and NO_x emissions in ozone formation differs from region to region, and from day to day, most air pollution control plans in California require roughly equivalent controls (on a ton per year basis) for these two pollutants. The change in emissions of the sum of these pollutants, equally weighted, will be used to provide a reasonable estimate of the impact of the SVEP on ozone levels. The net change in emissions of ozone precursors from the SVEP will be compared with emissions from all sources within Riverside County (Table 8.1H-1), and within the South Coast Air Basin (Table 8.1H-2) as a whole.

TABLE 8.1H-1
Estimated Riverside County Emissions Inventory for 2004 (tons/day)

Source Category	TOG	ROG	со	NO _x	SOx	РМ	PM ₁₀
Total Stationary Sources	37.2	12.17	5.86	10.91	0.47	2.1	1.45
Total Area Sources	92.87	26.05	26.22	3.77	0.05	152.6	76.0
Total Mobile Sources	59.52	54.58	507.65	135.81	1.87	6.2	6.11
Total Natural Sources	38.0	32.57	52.26	1.55	0.48	7.52	5.26
County Total	227.6	125.4	592.0	152.1	2.88	168.4	88.8

Source: CARB

TABLE 8.1H-2
Estimated South Coast Air Basin Emissions Inventory for 2003 (tons/day)

Source Category	TOG	ROG	co	NO _x	SOx	PM	PM ₁₀
Total Stationary Sources	480.7	150.9	73.1	71.8	24.9	19.8	15.5
Total Area Sources	334.6	173.8	156.1	31.8	0.4	473.5	235.1
Total Mobile Sources	522.0	479.6	4,217.9	941.3	37.6	40.7	39.9
Total Natural Sources	5.5	3.1	89.0	4.1	-	18.2	17.5
County Total	1,342.8	807.4	4,536.0	1,048.9	62.9	552.1	307.9

Source: CARB

Air quality impacts of fine particulate, or PM_{10} , have the potential to be either regional or localized in nature. On a regional basis, an analysis similar to that presented above for ozone will be performed, looking at the three pollutants that can form PM_{10} in the atmosphere, i.e., VOC, SO_x , and NO_x as well as at directly emitted particulate matter. SCAQMD regulations require offsets to be provided for PM_{10} emissions from the project, as facility emissions will exceed the Rule 1304 offset threshold of 4 tons per year. In addition, full mitigation of PM_{10} will likely be required by the CEC.

As in the case of ozone precursors, emissions of PM_{10} precursors are expected to have approximately equivalent ambient impacts in forming PM_{10} , per ton of emissions on a regional basis. Table 8.1H-3 provides the comparison of emissions of the criteria pollutants from the SVEP with emissions from all sources within Los Angeles County, and within the South Coast Air Basin as a whole.

TABLE 8.1H-3
Comparison of SVEP Emissions to Estimated Inventory for 2003-4

Category	TOG	ROG	CO	NOx	SOx	PM	PM ₁₀
SVEP Emissions (tons/yr)	NA	29.5	174.0	105.8	7.5	73.7	73.7
SVEP Emissions (tons/day)	NA	0.147	0.859	0.535	0.037	0.366	0.366
County Total (tons/day)	227.6	125.4	592.0	152.1	2.88	168.4	88.8
Air Basin Total (tons/day)	1,342.8	807.4	4,536.0	1,048.9	62.9	552.1	307.9
SVEP % of County Total	NA	0.12	0.145	0.35	1.28	0.22	0.41
SVEP % of Air Basin Total	NA	0.018	0.019	0.05	0.06	0.066	0.12

SVEP VOC emissions compared to inventory ROG emissions.

8.1H.2 Localized Impacts

Localized impacts from the SVEP could result from emissions of carbon monoxide, oxides of nitrogen, sulfur oxides, and directly emitted PM_{10} . A dispersion modeling analysis of potential cumulative air quality impacts will be performed for all four of these pollutants.

In evaluating the potential cumulative localized impacts of the SVEP in conjunction with the impacts of existing facilities and facilities not yet in operation but that are reasonably foreseeable, a potential impact area in which cumulative localized impacts could occur was identified by CEC staff as an area with a radius of 8 miles around the plant site. Based on the results of the air quality modeling analyses described in AFC Section 8.1 (Air Quality), "significant" air quality impacts, as that term is defined in federal air quality modeling guidelines, have not been determined for the SVEP. If the project's impacts do not exceed the significance levels, no cumulative impacts would be expected to occur, and no further analysis would be required. Should data be developed which shows that the SVEP emissions would result in "significant" impacts, then all projects identified within a search area with a radius of 8 miles beyond the project's impact area will be used for the cumulative impacts analysis. Within this search area, three categories of projects or sources will be evaluated for inclusion in the analysis:

- Projects that are existing and have been in operation prior to January 1, 2005 (emissions
 are included in the overall background air quality assessment).
- Projects for which air pollution permits to construct have been issued and that began operation after January 1, 2005.
- Projects for which air pollution permits to construct have been issued after January 1, 2005, but that are not yet in operation.

Projects that are existing and have been in operation prior to 1-1-2005 will be reflected in the ambient air quality data that has been used to represent background concentrations; consequently, no further analysis of the emissions from this category of facilities will be performed. The cumulative impacts analysis adds the modeled impacts of selected facilities to the maximum measured background air quality levels, thus ensuring that these existing projects are taken into account. All other projects will be identified by a request to the SCAQMD for an applicable source or facility listing.

The SVEP is not expected to trigger PSD review. Notwithstanding the foregoing, a list of sources within the project region meeting the above noted criteria has been requested from the SCAQMD staff.

Given the potentially wide geographic area over which the dispersion modeling analysis may be performed, the ISCST3 model will be used to evaluate cumulative localized air quality impacts. The detailed modeling procedures, ISCST3 options, and meteorological data used in the cumulative impacts dispersion analysis will be the same as those described in the AFC Air Quality section. The receptor grid spacing will be determined in consultation with the SCAQMD for the area in which the detailed modeling analysis is to be performed.

8.1H.3 Cumulative Impacts Dispersion Modeling

The dispersion modeling analysis of cumulative localized air quality impacts for the proposed project will be evaluated in combination with other reasonably foreseeable projects and air quality levels attributable to existing emission sources, and the impacts will be compared to state or federal air quality standards for significant impact. As discussed

above, the highest second-highest modeled concentrations will be used to demonstrate compliance with standards based on short-term averaging periods (24 hours or less).

Supporting information used in the analysis will include the following:

- 2003 estimated emissions inventory for Los Angeles County (Table 8.1H-1) and for the South Coast Area Air Basin (Table 8.1H-2);
- List of projects and their respective coordinate locations resulting from the screening analysis of permit files by the SCAQMD;
- Stack parameters for sources included in the cumulative air quality impacts dispersion modeling analysis; and
- Output files for the dispersion modeling analysis.

Table 8.1H-4 SCAQMD Emissions Trends and Forecasts

Table 8.1H-5 SCAQMD Natural Source Emissions Inventory Data

Table 8.1H-4 SCAQMD Emissions Trends and Forecasts

ARB Almanac 2005 - Appendix A: County Level Emissions and Air Quality by Air Basin

South Coast Air Basin County Emission Trends and Forecasts

ounty 4975 1980 1985 1990 1995 20	5 2000	ä		8	88 9			ä		微	201	歪	В	2000
obsolvence (Administration of Section (Section)				20	<u> </u>		Ę			95		331	90	
123 1171 1027	9 736												03,235	309
270 279 312 266	2 195			100	-	ilik			254	198			0000	Ę
le 88 99 111 151	3 137													64
ardino 130 140 146 149	7 128													65
1723 1641 1741 1588 1	1 1195	970	763	9 009	515 2725	5 2364	1 2324	1775			710	602	563	549

A STATE OF THE SECOND	1975	1980	1985	1990	1995	2000	2005	1000	2015	MA.	1975	1980	1985	1990	1995	2000	2005	2532	2015	202
ndeles	139	136	151	185	163	144	142	100	145		11684	9018	8811	6099	4718	3406	2364	direct	1446	122
⁹ ф	33	38	44	58	2	2	5		55		2622	2407	2464	1922	1454	1048	270		514	45
side	33	28	32	48	49	49	52		58		77.5	789	847	927	724	558	422		283	25
Semardino	43	4	47	53	29	46	48	22	5	53	1074	1169	1018	863	678	521	397	322	276	253
sin Total	236	247	274	343	325	293	296		309		16154	13382	13140	10322	7574	5533	3953		2519	218

Sounty.	1975	1980	1985	1990	1995	2000	2005	2010	2015	2020
os Angeles	8	2	72	92	62	59	9	29	09	90
Orange	9	4	19	2	18	19	19	19	18	19
Riverside	6	10	Ŧ	15	15	16	1	18	19	20
San Bernardino	8	18	16	17	48	17	18	18	19	20
Air Basin Total	124	116	117	129	112	ξ	113	114	116	119

A portion of Los Angeles County lies within the Mojave Desert Air Basin. Portions of Riverside County lie within the Mojave Desert and Salton Sea Air Basins. A portion of San Bernardino County Lies within the Mojave Desert Air Basin.

South Coast Air Basin

Natural Source Emissions (tons/day, annual average)

Category	ROG	CO	NOX	SOX	PM ₁₀	PM _{2.5}	NHa
Natural Sources Total	86	164	5	2	17	14	6
Biogenic Sources	76	0	0	0	0	0	3
Geogenic Sources	0	0	0	0	0	0	1
Wildfires	11	164	5	2	17	14	2

Table E-78

Los Angeles County

Category	ROG	CO	NOX	SOX	PM ₁₀	PM _{2.5}	NH₃
Natural Sources Total	34	65	2	1	7	6	2
Biogenic Sources	30	0	0	0	0	0	0
Geogenic Sources	0	0	0	0	0	0	1
Wildfires	4	65	2	1	7	6	1

Table E-79

A portion of Los Angeles County lies within the Mojave Desert Air Basin.

Orange County

Category	ROG	СО	NOx	SOx	PM ₁₀	PM _{2.5}	NH ₃
Natural Sources Total	9	2	0	0	0	0	0
Biogenic Sources	9	0	0	0	0	0	0
Geogenic Sources	0	0	0	0	0	0	0
Wildfires	0	2	0	0	0	0	0

Table E-80

Riverside County

Category	ROG	CO	NOX	\$O _X	PM ₁₀	PM _{2.5}	NHa
Natural Sources Total	24	38	1	0	4	3	1
Biogenic Sources	22	0	0	0	0	0	1
Geogenic Sources	0	0	0	0	0	0	0
Wildfires	2	38	1 1	0	4	3	0

Table E-81

Portions of Riverside County lie within the Mojave Desert and Salton Sea Air Basins.

San Bernardino County

Category	ROG	CO	NOx	SOX	PM ₁₀	PM _{2.5}	NH ₃
Natural Sources Total	19	59	2	1	6	5	3
Biogenic Sources	15	0	0	0	0	0	2
Geogenic Sources	0	0	0	0	0	0	0
Wildfires	4	59	2	1	6	5	1

Table E-82

A portion of San Bernardino County lies within the Mojave Desert Air Basin.